MATRIX MICROTECH CORP.

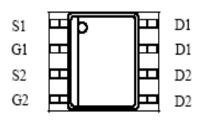
Dual N-Channel 60V (D-S) MOSFET

♦ DESCRIPTION

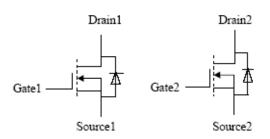
The MT9945 uses advanced technology to provide excellent $R_{DS(ON)}$, low switching loss and reasonable price.

This high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage application such as cellular phone and notebook computer power management and other battery powered circuits, and low in-line power loss are needed in a very small outline surface mount package.

FEATURES


- ➢ V_{DS} = 60V
- > $R_{DS(ON)}$, V_{GS} @ 10V, I_{DS} @ 3.6A = 89m Ω
- R_{DS(ON)}, V_{GS} @ 4.5V, I_{DS} @ 3.4A = 104mΩ
- Advanced trench process technology
- High Density Cell Design For Ultra Low On-Resistance
- > High power and Current handing capacity.
- Fully Characterized Avalanche Voltage andCurrent

APPLICATIONS


- > POWER Management in Notebook
- Portable Equipment
- Battery Powered System

PIN CONFIGURATION

MT9945

K HMT9945Dual N-Channel 60V (D-S) MOSFET

ABSOLUTE MAXIMUM RATINGS

(T_A=25 °C Unless Otherwise Noted)

Parameter		Symbol	Maximum	Unit
Drain-Source Voltage		V _{DS}	60	V
Gate-Source Voltage		V _{GS}	± 20	V
Continuous Drain Current ⁽¹⁾		I _D	3.6	А
Pulsed Drain Current ⁽²⁾		I _{DM}	25	А
Maximum Power Dissipation(1)	T _A = 25 ℃	P	2.1	W
	T _A = 75 ℃	P _D	1.3	vv
Operating junction temperature range		ΤJ	150	°C
Storage temperature range		T _{STG}	- 55 to 150	°C

THERMAL RESISTANCE RATINGS

Thermal Resistance	Symbol	Maximum	Unit
Junction-to-Ambient(1)	$R_{ extsf{ heta}JA}$	62.5	°C/W

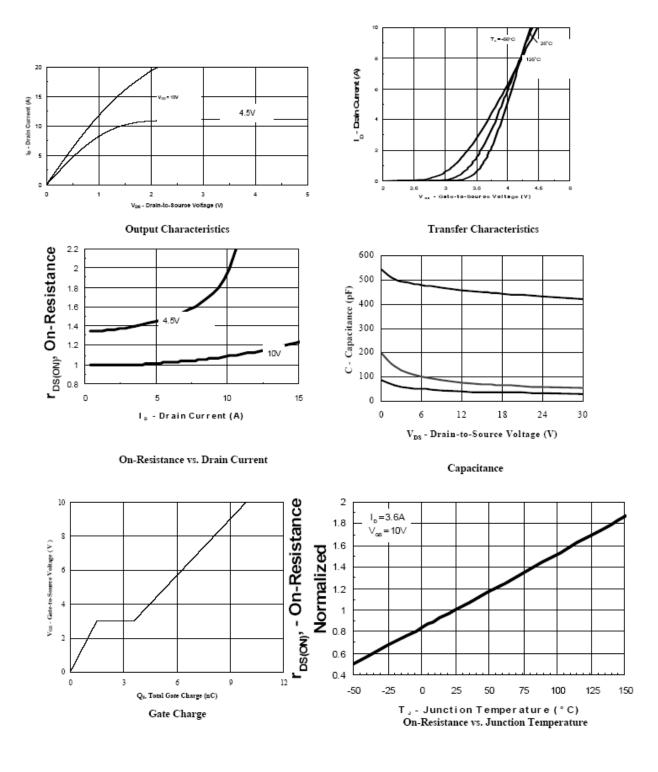
Dual N-Channel 60V (D-S) MOSFET

♦ ELECTRICAL CHARACTERISTICS

(T_A=25 °C Unless Otherwise Noted)

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit			
Static Characteristics									
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} = 0V, I _D = 250 μA	60	-	-	V			
Drain-Source On State Resistance ⁽¹⁾	R _{DS(ON)}	V _{GS} = 4.5V, I _D = 3.4 A	-	-	104	mΩ			
		V _{GS} = 10V, I _D = 3.6 A	-	-	89				
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$	1.0	-	-	V			
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 60V, V _{GS} = 0 V	-	-	1	μA			
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0V, V_{GS} = \pm 20 V,$	-	-	±100	nA			
Diode Forward Voltage ⁽¹⁾	g _{fs}	I _D =3.6 A, V _{DS} = 15V	-	11	-	S			
Dynamic Characteristics (2)									
Total Gate Charge	Qg	V _{D S} = 30V, V _{GS} = 4.5V, I _D = 3.6A	-	3.6	-	nC			
Gate Source Charge	Q _{gs}		-	1.8	-				
Gate Drain Charge	Q_{gd}		-	1.3	-				
Switching									
Turn-On Delay Time	T _{D(on)}	V _{DD} = 30V, V _{GEN} = 10V, R _L = 30Ω, I _D = 1A,	-	9	-	nS			
Turn-On Rise Time	Tr		-	10	-				
Turn-Off Delay Time	T _{D(off)}		-	21	-				
Turn-Off Fall Time	T _f		-	8	-				

Note :


1. Pulse Test : Pulse width \leq 300us , Duty Cycle \leq 2%

2. Guaranteed by design, not subject to production testing.

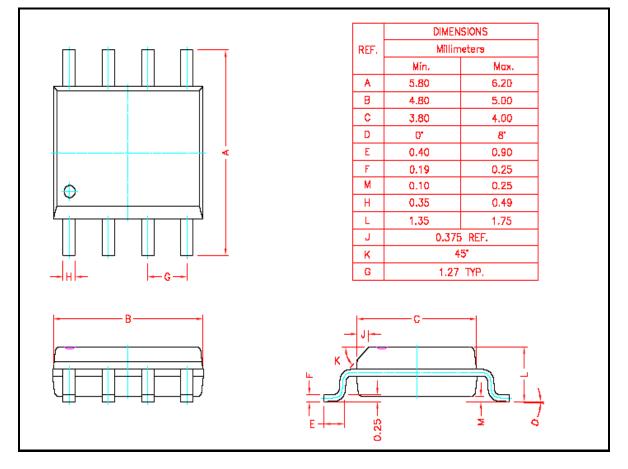
Dual N-Channel 60V (D-S) MOSFET

♦ TYPICAL CHARACTERICTICS

Dual N-Channel 60V (D-S) MOSFET

100 0.1 l_s - Source Current ID = 3.6 A 10 Ds(ov) - On-Resistance (OHM) 0.08 T_= 125°C 1 0.06 € 0.1 0.04 0.01 25°C 0.001 0.02 0.0001 0 0 0.2 0.4 0.6 0.8 1 1.2 2 4 б 8 10 V₀₈ - Gate-to-Source Voltage (V) V so - Source-to-Drain VOLTAGE (V) Source-Drain Diode Forward Voltage On-Resistance vs. Gate-to-Source Voltage 50 2.2 SINGLE PULSE RaJA = 125oCW TA = 25oC 2 40 ID = -250 Voson/Variance (V) 1.8 30 Power(W) 1.6 20 1.4 10 1.20 1 0.01 0.1 100 0.001 1 10 -50 -25 0 25 50 75 100 125 150 175 Time (sec) T_J - Temperature (°C) Threshold Voltage Single Pulse Power 1 D = 0.5Ħ Normalized Effective Transient $RqJ_A(t) = r(t) + B$ $RqJA = 125^{\circ}C/W$ R 0.1 Ш Thermal Impedance 0.1 0.0 P(pl 0.02 0.01 $T_{j} = T_{A} = t 2RqJ_{A(0)}$ Duty Cycle, $D = t1/t^{2}$ 0.01 THE PUL -----0.001 0.0001 0.001 0.01 0.1 1 Square Wave Pulse Duration (sec) 10 100 1000

♦ TYPICAL CHARACTERICTICS


Normalized Thermal Transient Impedance, Junction-to-Ambient

Dual N-Channel 60V (D-S) MOSFET

• PHYSICAL DIMENSIONS

8-Pin Plastic S.O.I.C.

