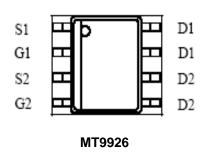


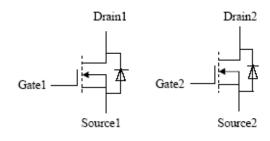
DESCRIPTION

The MT9926 uses advanced technology to provide excellent $R_{DS(ON)}$, low switching loss and reasonable price.

This high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage application such as cellular phone and notebook computer power management and other battery powered circuits, and low in-line power loss are needed in a very small outline surface mount package.

◆ FEATURES


- V_{DS} = 20V
- $Arr R_{DS(ON)}$, V_{GS} @ 2.5V, I_{DS} @ 5.2A = 40mΩ
- $Arr R_{DS(ON)}$, V_{GS} @ 4.5V, I_{DS} @ 6A = 28mΩ
- Advanced trench process technology
- High Density Cell Design For Ultra Low On-Resistance
- High power and Current handing capacity.
- Fully Characterized Avalanche Voltage andCurrent


◆ APPLICATIONS

- POWER Management in Notebook
- Portable Equipment
- Battery Powered System

♦ PIN CONFIGURATION

SOP-8

♦ ABSOLUTE MAXIMUM RATINGS

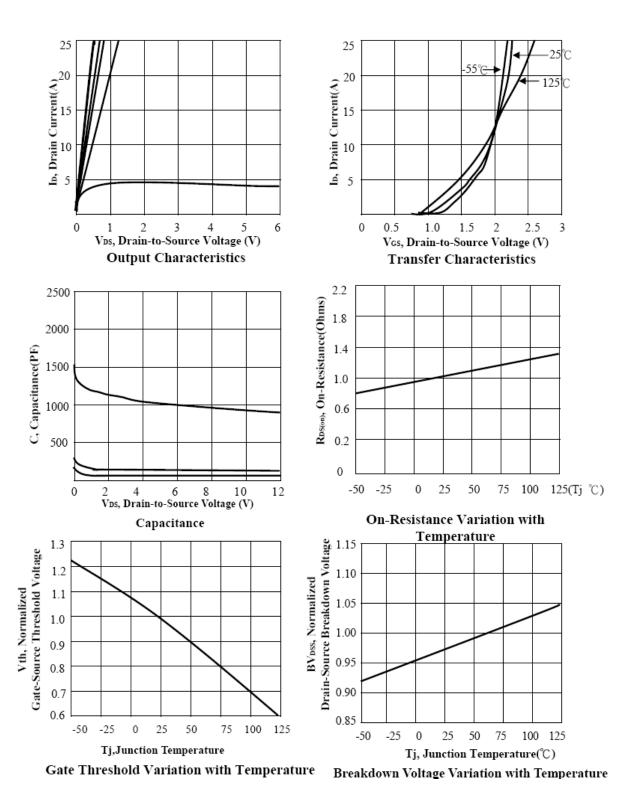
(T_A=25 °C Unless Otherwise Noted)

Parameter		Symbol	Maximum	Unit
Drain-Source Voltage		V_{DS}	20	V
Gate-Source Voltage		V_{GS}	± 12	V
Continuous Drain Current		I _D	6	А
Pulsed Drain Current		I _{DM}	20	Α
Maximum Power Dissipation	T _A = 25 ℃	P_D	2.0	W
	T _A = 75 °C		1.3]
Operating junction temperature range		T_J	150	°C
Storage temperature range		T _{STG}	- 55 to 150	°C

♦ THERMAL RESISTANCE RATINGS

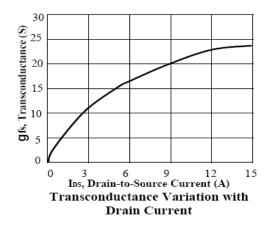
Thermal Resistance	Symbol	Maximum	Unit
Junction-to-Ambient	$R_{ heta JA}$	62.5	°C/W

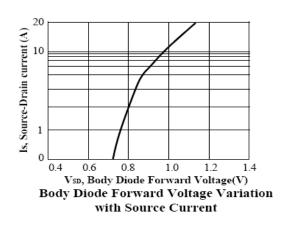
♦ ELECTRICAL CHARACTERISTICS

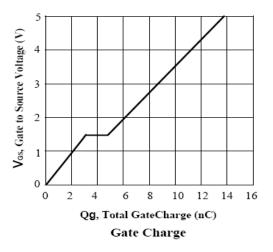

(T_A=25 °C Unless Otherwise Noted)

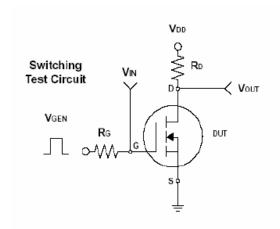
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static Characteristics			I			
Drain-Source Breakdown Voltage	BV _{DSS}	$V_{GS} = 0V, I_D = 250 \mu A$	20	-	-	V
Drain-Source On State Resistance	R _{DS(ON)}	$V_{GS} = 4.5V, I_D = 6 A$	-	22	28	mΩ
		V _{GS} = 2.5V, I _D = 5.2 A	-	30	40	
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}, I_{D} = 250 \mu A$	0.6	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 20V, V _{GS} = 0 V	-	-	1	μΑ
Gate-Body Leakage	I _{GSS}	$V_{DS} = 0V, V_{GS} = \pm 12 V,$	-	-	±100	nA
Diode Forward Voltage	g _{fs}	I _D = 6 A, V _{DS} = 10V	7	13	-	S
Dynamic Characteristics (2)						
Total Gate Charge	Qg	V_{DS} = 10V, V_{GS} = 4.5V, I_{D} = 6A	-	4.86	-	nC
Gate Source Charge	Q_{gs}		-	0.92	-	
Gate Drain Charge	Q_{gd}		-	1.4	-	
Input Cap.	C _{iss}		-	562	-	pF
Output Cap.	C _{oss}	$V_{DS} = 8V$, $V_{GS} = 0V$ f = 1MHz	-	106	-	
Reverse Transfer Cap.	C _{rss}		-	75	-	
Turn-On Delay Time	$T_{D(on)}$	V_{DD} = 10V, V_{GEN} = 4.5V, R_{G} = 6 Ω , I_{D} = 1A,	-	8.1	-	nS
Turn-On Rise Time	T _r		-	9.95	-	
Turn-Off Delay Time	$T_{D(off)}$		-	21.85	-	
Turn-Off Fall Time	T _f		-	5.35	-	
Source-Drain Diode	-		•			•
Max. Diode Forward Current	I _S		-	-	1.7	Α
Diode Forward Voltage	V_{SD}	$V_{GS} = 0V, I_{S} = 1.7A$	-	-	1.2	V

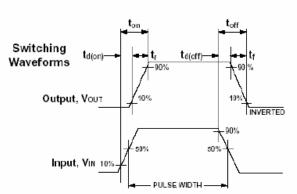
Note:

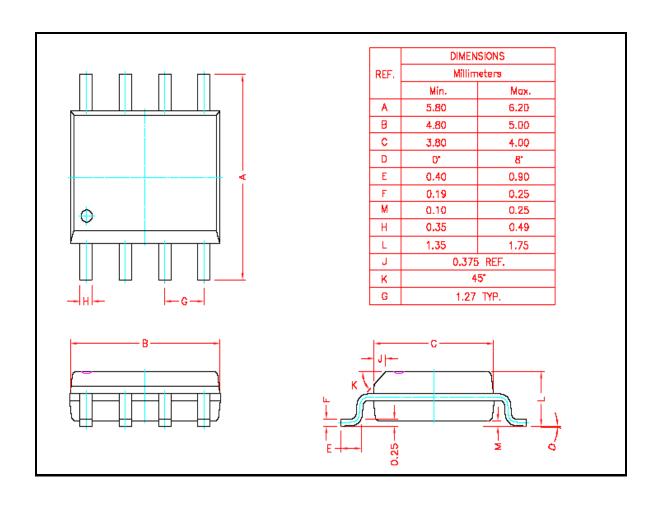

^{1.} Pulse Test: Pulse width ≤ 300us, Duty Cycle ≤ 2%


◆ TYPICAL CHARACTERICTICS




◆ TYPICAL CHARACTERICTICS




♦ TYPICAL APPLICATIONS

♦ PHYSICAL DIMENSIONS 8-Pin Plastic S.O.I.C.

