

DESCRIPTION

The MT1118A series of fixed output low dropout linear regulators are designed for portable battery powered applications, which require low power consumption, low noise environment, and low dropout voltage.

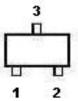
Each device contains a bandgap voltage reference, an error amplifier, a PMOS power transistor, and resistors for setting output voltage, and current limit and temperature limit protection circuits.

The MT1118A has been designed to be used with low cost capacitors and requires a minimum output capacitor of 1.0µF. Standard voltage versions are 1.5, 1.8, 2.5, 2.8, 3.0, 3.3 and 3.6V.

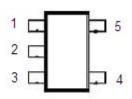
◆ FEATURES

- Excellent Line and Load Regulation
- High Accuracy Output Voltage of 2%
- Ultra-Low Ground Current at 25 uA (Typ.)
- Over Current and thermal Protection
- Typical 175mV Dropout Voltage at 150mA

APPLICATIONS


- USB removable devices
- MPEG4 devices
- Portable DVD players
- Wireless LAN's
- Hand-Held Instrumentation
- Digital camera

♦ PIN CONFIGURATIONS


SOT-89 (Top View)

MT11181A-X.XJ 1:OUT, 2:GND 3:IN MT11182A-X.XJ 1:GND, 2:IN, 3:OUT SOT-23 (Top View)

MT11181A-X.XS 1:OUT, 2:IN, 3:GND MT11182A-X.XS 1:GND, 2:OUT, 3:IN SOT-23-5L (Top View)

MT11182A-X.XN

1:IN 2:GND 3:ENABLE 4:BP 5:OUT

♦ ABSOLUTE MAXIMUM RATINGS(1)

Parameter	Symbol	Maximum	Unit
Input supply voltage	V _{IN}	6	V
Thermal resistance junction to ambient			
SOT-89	θ_{JA}	180	°C/W
SOT-23		230	
Junction temperature	TJ	150	°C
Storage temperature range	T _{STG}	-40 to 150	°C
Lead temperature (soldering) 10sec	T _{LEAD}	260	°C

Note:

Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal.

ORDERING INFORMATION

Device	Package		Vout Volts	T _A (°C)	
MT11181A-X.XJ	-	SOT-89	X.X 1.5/1.8/2.5/2.8/3.0/3.3/3.6	0 ~ 70	
MT11182A-X.XJ	J	301-09	X.X_1.3/1.6/2.3/2.6/3.0/3.3/3.0	0 ~ 70	
MT11181A-X.XS	S	SOT-23	X.X 1.5/1.8/2.5/2.8/3.0/3.3/3.6	0 ~ 70	
MT11182A-X.XS	3	301-23	A.A_1.5/1.6/2.5/2.6/3.0/3.5/3.0	0 ~ 70	
MT11182A-X.XN	N	SOT-23-5	X.X_1.5/1.8/2.5/2.8/3.0/3.3/3.6	0 ~ 70	

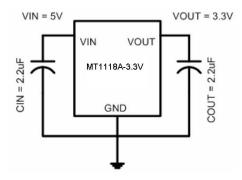
♦ POWER DISSIPATION TABLE(3)

Package	θ _{JA}	T _A ≤ 25 °C Power rating(Mw)	T _A =70°C Power rating(Mw)	T _A = 85 °C Power rating (Mw)
J	180	694	444	361
S	230	543	348	283
N	230	543	348	283

♦ RECOMMENDED OPERATING CONDITIONS(2)

Parameter		Operating Conditions			
r ai ailletei	Symbol	Min.	Тур.	Max.	Unit
Input Voltage	V_{IN}	ı	ı	5.5	V
Junction temperature	T _J	0	-	125	°C

♦ ELECTRICAL CHARACTERISTICS


Operating Conditions: V_{IN} = 5V; I_{OUT} =10mA; T_J =25 $^{\circ}$ C, unless otherwise specified.(C_{OUT} =2.2 μ F, C_{IN} =2.2 μ F).

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
		MT1118A-1.5 (V _{IN} = 3.3V)	1.470	1.5	1.530		
		MT1118A-1.8 (V _{IN} = 3.3V)	1.764	1.8	1.836		
		MT1118A-2.5	2.450	2.5	2.550		
Output Voltage	V_{OUT}	MT1118A-2.8	2.744	2.8	2.856	V	
		MT1118A-3.0	2.940	3.0	3.060		
		MT1118A-3.3	3.234	3.3	3.366		
		MT1118A-3.6	3.528	3.6	3.672		
Line Regulation	V_{SR}	$V_{IN} = (V_{OUT} + 0.8)V \text{ to } 5.5V$	-	0.2	1	%/V	
Load Regulation ⁽⁴⁾	V_{LR}	$V_{IN} = (V_{OUT} + 0.8)V \text{ to } 2.5V$ $I_{OUT} = 10\text{mA to } 600\text{mA}$	-	2.0	-	%	
	V _D	I _{OUT} = 10mA	-	5	-	- mV	
Dranaut Valtage ⁽⁵⁾		I _{OUT} = 150mA	-	175	-		
Dropout Voltage ⁽⁵⁾		I _{OUT} = 250mA	-	300	-		
		I _{OUT} = 600mA	-	800	-		
Quiescent Current	ΙQ	I _{OUT} = 10mA	-	25	-	uA	
Current Limit	I _{LIMIT}		600	-	-	mA	
The amount Due to eties:	T _{PRO}	Thermal Protection Temperature	-	150	-	°C	
Thermal Protection		Protection Hysterisys	-	20	-		
Ripple Rejection Ratio	PSRR	f = 120Hz	-	60	-	dB	

Note:

- 1. Exceeding the absolute maximum rating may damage the device.
- 2. The device is not guaranteed to function outside its operating rating.
- 3. The maximum allowable power dissipation at any T_A (ambient temperature) is calculated using: $P_{D(MAX)} = (T_{J(MAX)} T_A)/\Theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. See "Thermal Consideration" section for details
- 4. Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 0.1mA to 600mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- 5. Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.

♦ TYPICAL APPLICATIONS

♦ APPLICATION NOTE

Application Hints

Like any low dropout regulator, MT1118A requires external capacitors to ensure stability. The external capacitors must be carefully selected to ensure performance.

Input Capacitor

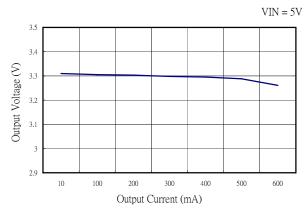
An input capacitor of at least 1µF is required. Ceramic or Tantalum can be used. The value can be increase without upper limit.

Output Capacitor

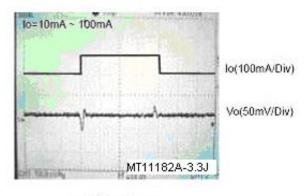
An output capacitor is required for stability. It must be placed no more than 1 cm away from the V_{OUT} pin, and connected directly between V_{OUT} and GND pins. The minimum value is $1\mu F$ but may be increase without limit.

Thermal Considerations

It is important that the thermal limit of the package is not exceeded. The MT1118A has built-in thermal protection. When the thermal limit is exceeded, the IC will enter protection, and V_{OUT} will be pulled to ground. The power dissipation for a given application can be calculated as following:

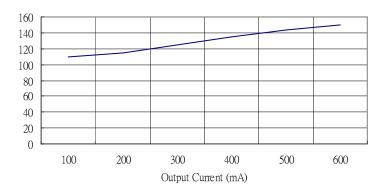

The power dissipation (P_D) is $P_D = I_{OUT} * [V_{IN} - V_{OUT}]$

The thermal limit of the package is then limited to $P_{D(MAX)} = [T_J - T_A]/\Theta_{JA}$ where T_J is the junction temperature, T_A is the ambient temperature, and Θ_{JA} is around 180°C/W for MT1118A. MT1118A is designed to enter thermal protection at 150°C. For example, if T_A is 25°C then the maximum P_D is limited to about 0.7W. In other words, if $I_{OUT(MAX)} = 600$ mA, then $[V_{IN} - V_{OUT}]$ cannot exceed 1.7V.

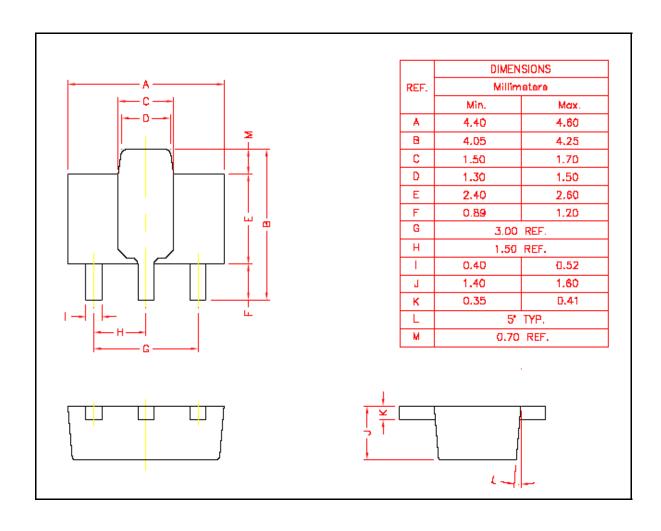


♦ APPLICATION NOTE

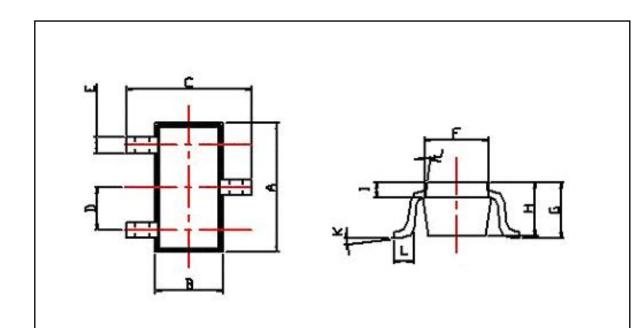
LOAD REGULATION



LOAD TRANSIENT RESPONSE

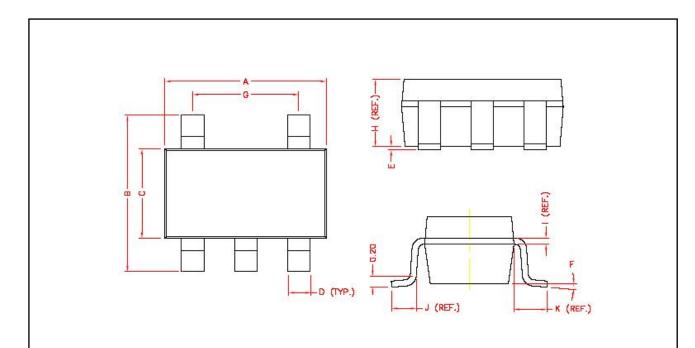

Time(250us/Div)

Quiescent Current VS lout


◆ PHYSICAL DIMENSIONS 3-Pin surface Mount SOT-89(J)

♦ PHYSICAL DIMENSIONS

3-Pin surface Mount SOT-23(S)



REF.	Millin	neter	REF.	Millimeter		
	Min.	Max.		Min.	Max.	
Α	2.70	3.10	G	0.9	1.4	
В	1.20	1.66	Н	0.8	1.30	
С	2.37	2.90	I	0.25 0.7		
D	0.85	1.15	J	7 ± 2°.		
Е	0.350 + 0	0.15/-0.05	К	0 ~ 10°.		
F	1.07	1.53	L	0.2 (MIN)		

♦ PHYSICAL DIMENSIONS

5-Pin surface Mount SOT-23(N)

REF.	Millimeter		REF.	Millimeter		
KEF.	Min.	Max.	IXLI.	Min.	Max.	
Α	2.70	3.10	G	1.90 REF.		
В	2.60	3.00	Н	1.20 REF.		
С	1.40	1.80	I	0.12 REF.		
D	0.30	0.55	J	0.37 REF.		
Е	0	0.10	K	0.60 REF.		
F	0°	10 ⁰				