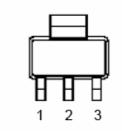


◆ DESCRIPTION

MT1122A is a low dropout positive fixed-mode regulator with minimum of 1A output current capability. The product is specifically designed to provide well-regulated supply for low voltage IC applications such as high-speed bus termination and low current 1.2V logic supply. MT1122A is also well suited for other applications such as VGA cards.

MT1122A is guaranteed to have a typical 1.3V dropout at full load current making it ideal to provide well-regulated outputs of 1.2 output voltage with 2.7V input voltage supply

♦ FEATURES


- > 1.3V typical dropout at full load current
- ➤ Fixed 1.2V±2% output voltage
- Fast transient response
- Output current limiting
- Built-in thermal shutdown
- Good noise rejection
- Rugged 2KV ESD withstand capability.

◆ APPLICATIONS

- PC peripheral
- Communication

♦ PIN CONFIGURATIONS

SOT-223 (Top View)

MT1122A 1:GND. 2:OUT 3:IN

♦ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Maximum	Unit
Power Dissipation	P_{D}	Internally Limited	W
Input voltage	V _{IN}	12	V
Thermal resistance junction to case	θ_{JA}	60	°C/W
Operating junction temperature range	TJ	-40 to 150	°C
Storage temperature range	T _{STG}	-40 to 150	°C
Lead temperature (soldering) 10sec	T_{LEAD}	260	°C

Note:

Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal.

♦ ORDERING INFORMATION

Device	Package		Vout Volts
MT1122A	Α	SOT-223	Fixed output voltages 1.2V

♦ POWER DISSIPATION TABLE

Package	(°C \W)	T _A ≤ 25 °C Power rating(mW)	T _A =70 °C Power rating(mW)	T _A = 85 °C Power rating (mW)
А	60	2083	1333	1083

Note:

1. θ_{JA} : Thermal Resistance-Junction to Ambient,

Junction Temperature Calculation:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA}),$$

The θ_{JA} numbers are guidelines for the thermal performance of the device/PC-board system. All of the above assume no ambient airflow.

2. θ_{JT} : Thermal Resistance-Junction to Ambient, TC: case(Tab) temperature, TJ = TC + (Pd × θ JT) For A package, θ_{JT} = 15.0 °C /W.

◆ RECOMMENDED OPERATING CONDITIONS

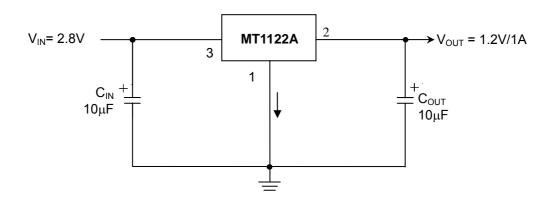
Parameter	0	Operating Conditions			1124	
T didifficiel	Symbol	Min.	Тур.	Max.	Unit	
Input Voltage	V_{IN}	2.7	-	10	V	
Load Current (with adequate heat sinking)	Io	5	-	-	mA	
Input Capacitor (V _{IN} to GND)	C _{IN}	1.0	_	_	μF	
Output Capacitor with ESR of 10Ω max., (V _{OUT} to GND)	C _{OUT}	4.7	-	-	μF	
Junction temperature	T_J	-	-	150	°C	

ELECTRICAL CHARACTERISTICS

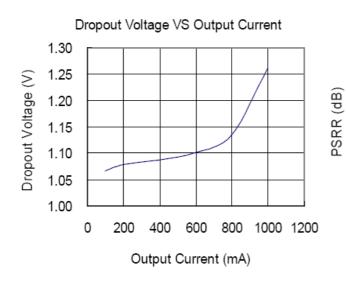
Operating Conditions: Vin = 2.8V, lout = 10mA, Ta = 25 °C, Cin=10μF, Cout=10μF, unless otherwise specified

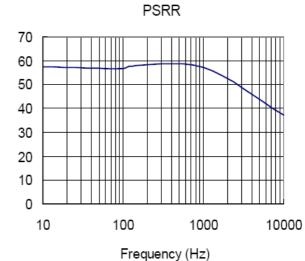
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Output Voltage (1)	Vo		1.176	1.20	1.224	V
Line Regulation (1)	V_{SR}	2.8V < V _{IN} < 12V	-	0.3	-	%
Load Regulation (1)	V_{LR}	$10mA \le I_{OUT} \le 1A$	-	0.5	-	%
Dropout Voltage (2)	V_D	I _{OUT} = 1A	-	1.3	-	V
Current Limit	I _{CL}		1.1	-	-	Α
Quiescent Current	ΙQ		-	1.2	-	mA
Temperature Coefficienc	T _C		-	0.02	-	%/°C
Thermal Protection	OTP		-	175	-	$^{\circ}\!\mathbb{C}$
RMS output Noise	V_N	$T_A = 25^{\circ}C$, $10H_Z \le f \le = 10kH_Z$	-	0.003	-	% V _o
Ripple Rejection Ratio	PSRR	f =120Hz, I_{OUT} =10mA C_{OUT} = 22u(Tantalum), $(V_{IN}-V_{OUT})$ = 3V	-	57		dB

NOTES:

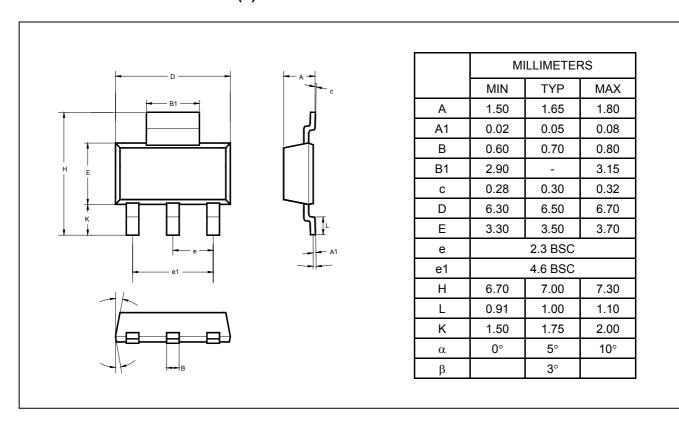

⁽¹⁾ Low duty cycle pulse testing with which T_J remain unchanged.

⁽²⁾ The dropout voltage is the input/output differential at which the circuit ceases to regulate against further reduction in input voltage. It is measured when the output voltage has dropped 2% from the nominal value obtained at $V_{IN} = V_{OUT} + V_{OU$




◆ TYPICAL APPLICATIONS

Fixed Voltage Regulator:


◆ TYPICAL PERFORMANCE CHARACTERISTICS

◆ PHYSICAL DIMENSIONS 3-Pin Surface Mount SOT-223(A)

